Real-Time Local GP Model Learning
نویسندگان
چکیده
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [1, 2]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted projection regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.
منابع مشابه
Local Gaussian Process Regression for Real Time Online Model Learning and Control
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...
متن کاملLocal Gaussian Process Regression for Real Time Online Model Learning
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...
متن کاملLearning and Control using Gaussian Processes
Building physics-based models of complex physical systems like buildings and chemical plants is extremely cost and time prohibitive for applications such as real-time optimal control, production planning and supply chain logistics. Machine learning algorithms can reduce this cost and time complexity, and are, consequently, more scalable for large-scale physical systems. However, there are many ...
متن کاملEfficient Computation of Gaussian Process Regression for Large Spatial Data Sets by Patching Local Gaussian Processes
This paper develops an efficient computational method for solving a Gaussian process (GP) regression for large spatial data sets using a collection of suitably defined local GP regressions. The conventional local GP approach first partitions a domain into multiple non-overlapping local regions, and then fits an independent GP regression for each local region using the training data belonging to...
متن کاملLearning Non-Stationary Space-Time Models for Environmental Monitoring
One of the primary aspects of sustainable development involves accurate understanding and modeling of environmental phenomena. Many of these phenomena exhibit variations in both space and time and it is imperative to develop a deeper understanding of techniques that can model space-time dynamics accurately. In this paper we propose NOSTILL-GP NOn-stationary Space TIme variable Latent Length sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010